1- Razones trigonométricas de un ángulo

1. ¿Existe un ángulo "x" tal que senx=1/2 y cosx=1/4? ¿Puede valer el seno de un ángulo 1/8?.

Sol: no. si.

2. Calcula las restantes razones trigonométricas del ángulo α: cuadrante; b) sen α =-1/3 y $\alpha \in$ al tercer cuadrante.

a) $sen \alpha = 1/4$ y $\alpha \in al$ primer

Sol: a)
$$\cos \alpha = \sqrt{15}/4$$
, $tg\alpha = 1/\sqrt{15}$; b) $\cos \alpha = -2\sqrt{2}/3$, $tg\alpha = \sqrt{2}/4$

b)
$$\cos \alpha = -2\sqrt{2}/3$$
, $tg\alpha = \sqrt{2}/4$

- 3. Dibuja un ángulo cuyo seno sea el doble que su coseno.
- 4. Calcula en cada caso el valor de las demás razones trigonométricas considerando que x está en el primer cuadrante: a) senx= $\sqrt{3}/2$; b) $\cos x = 0.8$; c) $\tan 2x = 2$.

Sol: a)
$$cosx=1/2$$
; $tgx=\sqrt{3}$;

b)
$$senx=0,6$$
; $tgx=3/4$;

a)
$$cosx=1/2$$
; $tgx=\sqrt{3}$; b) $senx=0.6$; $tgx=3/4$; c) $senx=2/\sqrt{5}$; $cosx=1/\sqrt{5}$.

5. Calcula el seno, el coseno, la tangente, la contangente, la secante y la cosecante del ángulo de 1.110°.

Sol:
$$1110^{\circ}=30^{\circ}$$
; $sen1110=1/2$, $cos1110=\sqrt{3}/2$, $tg1110=1/\sqrt{3}$, $cotg1110=\sqrt{3}$, $sec1110=2/\sqrt{3}$, $cosec1110=2$.

6. Dibuja ángulos que cumplan las siguientes condiciones y estima el valor de sus razones trigonométricas. a) sen α =-1/2; tg α >0; b) tg β =1; cos β <0.

Sol: a)
$$210^{\circ}$$
; $\cos \alpha = -\sqrt{3}/2$, $tg\alpha = 1/\sqrt{3}$; b) 225° ; $sen\alpha = -\sqrt{2}/2$, $\cos \alpha = -\sqrt{2}/2$

7. Calcula senx, tgx, secx, cosecx, y cotgx, si cosx=0,6 y tgx<0.

Sol:
$$senx=-0.8$$
; $tgx=-4/3$, $secx=5/3$; $cosecx=-5/4$; $cotgx=-3/4$.

8. ¿Para qué angulos es sen α =-cos α ?.

9. Escribe en grados sexagesimales, centesimales y en radianes, el ángulo que forman las agujas del reloj cuando son: a) las 6:00; b) las 3:00; c) las 10:00.

Sol: a)
$$180^{\circ}$$
, 200° , πrad ; b) 90° , 100° , $\pi/2 \ rad$; c) 60° , $200/3^{\circ}$, $\pi/3 \ rad$

10. Expresa en grados sexagesimales: a) $\pi/4$ rad; b) $3\pi/4$ rad; c) $5\pi/4$ rad d) $4\pi/3$ rad.

11. Completa la tabla:

Radianes	п/			π		4	5		п/	
Grados		3	5		2			3		0

Sol: π/6, π/4, 5π/4, 7π/6, 3π/2, 60°, 180°, 135°, 225°, 90°

12. Halla las razones trigonométricas de α : a) $\cos \alpha = 3/5$ y α pertenece al cuarto cuadrante; b) $\cos \alpha = -1/3$ y α pertenece al segundo cuadrante; c) $tg\alpha = -2/5$ y α pertenece al segundo cuadrante; d) $\sec \alpha = -3/2$ y α pertenece al tercer cuadrante.

Sol: a)
$$sen\alpha = -4/5$$
; $tg\alpha = -4/3$; b) $sen\alpha = 2\sqrt{2}/3$, $tg\alpha = -2\sqrt{2}$; c) $sen\alpha = 2/\sqrt{29}$, $cos\alpha = -5/\sqrt{29}$; d) $sen\alpha = -\sqrt{5}/3$, $cos\alpha = -2/3$

13. Puede ser cierto: a) $sen\alpha=1/5$ y $cos\alpha=2/5$; b) senx=1/3 y tgx=1/9.

14. Si un ángulo está situado en el tercer cuadrante. ¿Qué signo tienen: la cotangente, la cosecante y la secante de ese ángulo?.

15. Si un ángulo está situado en el segundo o tercer cuadrante, ¿se puede asegurar que su tangente es negativa?.

16. Si tg α =4 y $\alpha \in [180,270]$, calcula el valor de las restantes razones trigonométricas:

Sol:
$$sen \alpha = -4/\sqrt{17}$$
; $cos \alpha = -1/\sqrt{17}$.

17. Usando la calculadora resuelve: senx=0,6018; cosy=0,6428; tgz=2,7475; $cotg\alpha=2,1445$.

Sol:
$$x=37^{\circ}$$
; $y=50^{\circ}$; $z=70^{\circ}$; $\alpha=25^{\circ}$.

18. Si el seno de α es 0,8 y el ángulo α no pertenece al primer cuadrante. Halla las demás razones trigonométricas.

Sol:
$$\cos \alpha = -0.6$$
; $tg\alpha = -4/3$

19. Si la tangente de α es 1/2 y el ángulo α pertenece al tercer cuadrante. Halla las demás razones trigonométricas

Sol:
$$\cos \alpha = -2/\sqrt{5}$$
; $\sin \alpha = -1/\sqrt{5}$

20. Si sec α = -2 y α no pertenece al tercer cuadrante calcular el resto de las razones trigonométricas.

Sol:
$$sen \alpha = \sqrt{3}/2$$
; $cos \alpha = -1/2$; $tg \alpha = -\sqrt{3}$

21. Si $tg\alpha=3/2$ y no pertenece al primer cuadrante halla las demás razones trigonométricas.

Sol:
$$sen \alpha = -3/\sqrt{13}$$
, $cos \alpha = -2/\sqrt{13}$

22. Dibuja un ángulo agudo tal que su seno sea 3/5.

2- Razones trigonométricas en función de ángulos conocidos

23. Calcular en función de las razones trigonométricas de ángulos conocidos las razones de: 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°.

Sol: $sen120^\circ = sen60^\circ$, $cos120^\circ = -cos60^\circ$; $sen135^\circ = sen45^\circ$, $cos135^\circ = -cos45^\circ$; $sen150^\circ = sen30^\circ$, $cos150^\circ = -cos30^\circ$; $sen180^\circ = sen0$, $cos180^\circ = -cos0$; $sen210^\circ = -sen30^\circ$, $cos210^\circ = -cos30^\circ$; $sen225^\circ = -sen45^\circ$, $cos225^\circ = -cos45^\circ$; $sen240^\circ = -sen60^\circ$, $cos240^\circ = -cos60^\circ$; $sen270^\circ = -sen90^\circ$, $cos270^\circ = -cos90^\circ$; $sen300^\circ = -sen60^\circ$, $cos300^\circ = -cos60^\circ$; $sen315^\circ = -sen45^\circ$, $cos315^\circ = -cos45^\circ$; $sen330^\circ = -sen30^\circ$, $cos330^\circ = -cos30^\circ$

24. Calcular las razones trigonométricas de 15° en función de ángulos de razones conocidas.

25. Estudia que ángulos pueden tener las siguientes relaciones entre sus razones trigonométricas considerando que α pertenece al primer cuadrante: a) $sen\alpha = sen\beta$; b) $cos\alpha = -cos\beta$; c) $sen\alpha = -cos\beta$; d) $tg\alpha = tg\beta$.

Sol: a)
$$\beta = 180 - \alpha$$
; b) $\beta = 180 - \alpha$ ó $\beta = 180 + \alpha$; c) $\beta = 90 + \alpha$ ó $270 - \alpha$; d) $\beta = 180 + \alpha$

26. Sin utilizar la calculadora calcula las razones trigonométricas de los ángulos: a) 765°; b) –240°.

Sol: a)
$$765^{\circ}=45^{\circ}$$
, $sen765^{\circ}=cos765^{\circ}=\sqrt{2}/2$; b) $-240^{\circ}=120^{\circ}$, $sen(-240^{\circ})=\sqrt{2}/2$, $cos(-240)=-1/2$

27. Sabiendo que sen 37°=0,6. Calcula las razones de 53°.

28. Sabiendo que cos 37°=0,8. Calcula las razones de 143°.

29. Sabiendo que el sen 20°=0,342. Calcula el seno del ángulo 40°.

Sol: 0,643.

30. Calcula las razones trigonométricas de 150 utilizando las razones del ángulo de 30°.

Sol:
$$sen150=1/2$$
, $cos150=-\sqrt{3}/2$: $tg150=-\sqrt{3}/3$.

31. Las razones trigonométricas del ángulo de 20° son: sen20°=0,342; cos20°=0,94; tg20°=0,364. Calcula las razones trigonométricas de 70°.

32. Las razones trigonométricas del ángulo de 53° son: sen 53°=0,8; cos 53°=0,6; tg 53°=4/3. Calcula las razones trigonométricas de 143°.

Sol:
$$sen143^{\circ}=0.6$$
; $cos143=-0.8$; $tg143=-3/4$.

33. Si sen 12°=0,2 y sen 37°=0,6, calcula: a) sen49°, cos49° y tg49° b) sen25°, cos25° y tg25°.

Sol: a)
$$sen49^{\circ}=0.74$$
; $cos49^{\circ}=0.656$; $tg49^{\circ}=1.15$; b) $sen25^{\circ}=0.42$; $cos25^{\circ}=0.9$; $tg25^{\circ}=0.47$

34. Calcula las razones trigonométricas de 215° si tg35°=0,7.

35. Calcular las razones trigonométricas de: 150°, -225°, 480°, -660°, -1770°, 1440°.

Sol:
$$sen150^{\circ}=1/2$$
, $cos150^{\circ}=-\sqrt{3}/2$; $sen(-225^{\circ})=\sqrt{2}/2$, $cos(-225^{\circ})=-\sqrt{2}/2$; $sen480^{\circ}=\sqrt{3}/2$, $cos480^{\circ}=-1/2$; $sen(-660^{\circ})=\sqrt{3}/2$, $cos(-660^{\circ})=1/2$; $sen(-1770^{\circ})=1/2$, $cos(-1770^{\circ})=\sqrt{3}/2$; $sen1440^{\circ}=0$, $cos1440^{\circ}=1$

36. Si α es un ángulo del 2º cuadrante, tal que sen α =3/5. Representar α , π - α , π + α , - α y calcular el seno de cada uno de ellos.

Sol:
$$sen(\pi - \alpha) = 4/5$$
; $sen(\pi + \alpha) = -3/5$; $sen(-\alpha) = 3/5$

37. Halla el ángulo complementario de 25°39'18". ¿Qué relación existe entre el seno de un ángulo y su complementario?.

Sol:
$$64^{\circ}20'42''$$
; $sen^2\alpha + sen^2(90-\alpha) = 1$

38. Halla el ángulo suplementario de 135°38'16". ¿Qué relación existe entre el seno de un ángulo y el de su suplementario?.

Sol:
$$44^{\circ}21'44''$$
, $sen \alpha = sen(180-\alpha)$

39. Sabiendo que sen α = 4/5 y que α está en el primer cuadrante. Halla las razones trigonométricas de 2α y $\alpha/2$.

Sol:
$$sen(2\alpha) = 24/25$$
, $cos(2\alpha) = -7/25$; $sen(\alpha/2) = 1/\sqrt{5}$, $cos(\alpha/2) = 2/\sqrt{5}$

40. Calcula las razones trigonométricas de -1200° , 570° y $10\pi/3$ rad.

Sol:
$$sen(-1200) = -\sqrt{3}/2$$
, $cos(-1200) = -1/2$; $sen(570) = -1/2$, $cos(570) = -\sqrt{3}/2$; $sen(10\pi/3) = -\sqrt{3}/2$, $cos(10\pi/3) = -1/2$

41. Hallar las razones trigonométricas de 75° y 3000°.

Sol:
$$sen75 = \sqrt{2}/4 + \sqrt{6}/4$$
; $cos75 = \sqrt{6}/4 - \sqrt{2}/4$; $sen3000 = \sqrt{3}/2$, $cos3000 = -1/2$

42. Relaciona entre sí, las razones trigonométricas de los ángulos 3625° y 4025°.

43. Sabiendo que $tg\alpha=1/2$, halla $tg(\alpha+45^{\circ})$ y $tg(45-\alpha)$.

Sol:
$$tg(\alpha+45)=3$$
; $tg(45-\alpha)=1/3$

44. Sabiendo que cos36°=0,8090. Halla las razones trigonométricas de los ángulos 9° y 6°.

45. Sabiendo que sen20°=0,342, calcula las razones trigonométricas de 40°.

46. Sabiendo que $\cos \alpha = 0.2$, calcula las razones trigonométricas de $((\pi/2)-2\alpha)$.

Sol:
$$sen((\pi/2)-2\alpha)=-0.92$$
; $cos((\pi/2)-2\alpha)=0.392$

47. Sabiendo que $tg\alpha=2$, α pertenece al primer cuadrante, calcula sen 3α .

Sol:
$$sen(3\alpha) = -2\sqrt{5}/25$$

48. Sabiendo que tg $2\alpha = \sqrt{3}$ y que $\alpha < (\pi/2)$, halla el seno y coseno de α .

Sol:
$$sen \alpha = 1/2$$
, $cos \alpha = \sqrt{3}/2$

49. Sabiendo que α es un ángulo situado en el segundo cuadrante y que tg α =-1/4, halla las razones trigonométricas de 2α .

Sol:
$$sen(2\alpha) = -8/17$$
; $cos(2\alpha) = 15/17$

50. Sabiendo que $tg(\alpha/2)=2$, Halla sen α y $cos\alpha$.

Sol:
$$sen \alpha = 4/5$$
: $cos \alpha = -3/5$

51. Sabiendo que $tg(\alpha+\beta)=-3$ y que $tg\alpha=2$. Halla $tg2\beta$ y $tg(\alpha-\beta)$.

Sol:
$$tg2\beta = \infty$$
; $tg(\alpha - \beta) = 1/3$

52. Transforma en producto: a) sen60°-sen30°, b) cos60°-cos30°.

53. Calcula reduciendo al primer cuadrante las razones trigonométricas siguientes: a) sen150; b) cos135; c) tg300; d) sec225; e) cosec120; f) cotg240; g) sen750; h) cos(8π/3).

Sol: a)
$$\frac{1}{2}$$
 b) $-\sqrt{2}/2$ c) $-\sqrt{3}$ d) $-\sqrt{2}$ e) $2/\sqrt{3}$ f) $\sqrt{3}/3$ g) $\frac{1}{2}$ h) $-1/2$.

- 54. Si sen 20°=0,34, calcula las razones trigonométricas de: a) 70°, b) 10°; c) 40°; d) 160°; e) 340°; f) 250°; g) 110°.
- Sol: a) sen70=0,94, cos70=0,34, tg70=2,76; b) sen10=0,17, cos10=0,98, tg10=0,177; c) sen40=0,6392, cos40=0,7680, tg40=0,83; d) sen160=0,34, cos160=-0,94, tg160=-0,36; e) sen340=-0,34, cos340=-0,94, tg340=0,36; f) sen250=-0,94, cos250=-0,34, tg250=2,76; g) sen110=0,94, cos110=-0,34, tg110=-2,76.
- 55. Sin tablas ni calculadora, determina: a) sen105°, b) cos15°, c) tg75°.

Sol: a)
$$(\sqrt{6} + \sqrt{2})/4$$
; b) $(\sqrt{6} + \sqrt{2})/4$; c) $(\sqrt{3} + 1)/(\sqrt{3} - 1)$.

56. Halla las razones trigonométricas de 840°.

Sol:
$$sen840 = \sqrt{3}/2$$
; $cos840 = -1/2$; $tg840 = -\sqrt{3}$.

57. Si α =60°. Calcula: a) $tg(\alpha/2)$; b) $cos^2\alpha$; c) $cos 4\alpha$; d) $cos(\alpha/2)$; e) $(cos\alpha)/2$; f) $sen 2\alpha$; g) $2sen\alpha$.

Sol: a)
$$\sqrt{3}/3$$
; b) $1/4$; c) -1/2; d) $\sqrt{3}/2$; e) $1/4$; f) $\sqrt{3}/2$; g) $\sqrt{3}$

Si llamamos sen 23° = A, expresa en función de A las siguientes razones trigonométricas.

Calcular las restantes razones trigonométricas del ángulo A en los siguientes casos:

a) sen(A+) = -1/5, si A está en el IV cuadrante.

- b) $\cos A = 9/13$, si A está en el I cuadrante.
- c) tg(90-A) =-3/4, si A está en el II cuadrante.
- d) sec(2+A) = -3, si A está en el II cuadrante.
- e) tg(2-A) = 3, si A está en el II cuadrante.
- f) $\csc(2-A) = 2\sqrt{2}$, si A está en el IV cuadrante.

Comprobar si son ciertas o falsas las siguientes igualdades trigonométricas.

```
a) ctg2\beta - cos2\beta = ctg2\beta \cdot cos2\beta
b) cos2\beta \cdot (1+tg2\beta) = ctg\beta \cdot tg\beta
```

- c) $(1-\sin\beta)\cdot(1+\sin\beta) = \cos 2\beta$
- d) $tg2\beta sen2\beta = tg2\beta \cdot sen2\beta$
- f) $(\operatorname{sen}\beta + \cos\beta) 2 = 1+2 \operatorname{tg}\beta \cdot \cos 2\beta$

Si sen $\beta = 2/3$, β es un ángulo del II cuadrante y cos $\alpha = -4/5$, α es un ángulo del III cuadrante. Calcular.

```
i) \cos (\alpha - \beta); v) \sin (2\alpha + \beta);

ii) \sin (\alpha + \beta); vi) \cos (\alpha + 2\beta);

iii) \tan 2\beta; vii) \tan (\alpha - \beta);

iv) \tan (2\alpha + \beta); viii) \tan (\alpha - \beta);

iv) \tan (2\alpha + \beta); viii) \cot (\alpha - \beta);

iv) \cot (2\alpha + \beta); viii) \cot (\alpha - \beta);
```

Si β es un ángulo del IV cuadrante y $\cos\beta=1/4$. Calcular:

- a) sen 2β ; cos 2β ; tg 2β ;
- b) sen 3β;
- c) $\cos 4\beta$;
- d) tg $(90+\beta)$ tg β

3- Ecuaciones trigonométricas.

1. Resolver: a) sen2x=-1/2; b) $cosx=\sqrt{3}/2$; c) tgx=1; d) $sen3x=\sqrt{3}/2$.

Sol: a)
$$x=105+180k$$
; $165+180k$; b) $x=30+360k$; $330+360k$; c) $x=45+180k$; d) $x=20+120k$; $40+120k$.

2. Resolver: a) $sen(x-(\pi/3))=sen(2x+(\pi/3));$ b) $cos2x=cos(x+\pi/2);$ c) cos2x=cosx; d) sen2x=cosx.

Sol: a)
$$x=60+120k$$
, $x=240+360k$; b) $x=\pi/2+2k\pi$, $x=11\pi/6+2k\pi/3$; c) $x=120k$; d) $x=30+120k$.

3. Resolver: a) $\log(\text{senx})$ - $\log(\cos x)$ =0; b) $\cos x$ - $2 \sin x \cdot \cos x$ =0; c) $\sin^2 x + \cos^2 x = 1/4$; d) $\tan^2 x + 2 = 3 \tan^2 x$; e) $\tan^2 x + \cos^2 x = 2 - \cos^2 x$.

Sol: a) x=45°+360k; b) x=90°+360k, x=30°+360k, 150+360k; c) x=60°+180k, x=120+180k; d) x=45°+180k, 63,43+180k; e) x=0+180k.

4. Resolver: a) $\cos^2 x = \sin^2 x$; b) $\sin x = -\cos x$; c) $\sin(2x-15^{\circ}) = \cos(x+15^{\circ})$.

Sol: a)
$$45+90k$$
; b) $135+180k$; c) $x=30^{\circ}+120k$, $x=330^{\circ}+360k$

5. Resolver: a) $tg\alpha=2sen\alpha$; b) $2sen^2x+cos^2x-3\sqrt{2senx}=0$; c) $sen^2x-senx+1/4=0$; d) $cos^2x=(cosx)/2$.

Sol: a)
$$\alpha = 60 + 360k$$
, $\alpha = 300 + 360k$, $\alpha = 360k$; b) $x = 45 + 360k$, $x = 135 + 360k$; c) $x = 30 + 360k$, $x = 150 + 360k$; d) $x = 90 + 180k$, $x = 60 + 360k$, $x = 300 + 360k$

6. Resolver, sabiendo que x e y pertenecen al primer cuadrante:

a)
$$\cos(60+x) = \sin x$$
 b) $\sin 2x = \tan x$ c) $4\cos^2 x - 4\cos x + 1 = 0$

$$d)\begin{cases} sen x + sen y = 1 \\ x + y = 90^{\circ} \end{cases} e)\begin{cases} tg x + tg y = 1 \\ \cos(x + y) = \frac{\sqrt{2}}{2} \end{cases}$$

Sol: a)
$$x=15^\circ$$
; b) $x=0$, $x=45^\circ$; c) $x=\pm 60^\circ$; d) $x=0$, $y=90^\circ$; $x=90^\circ$, $y=0$; y

7. Resuelve las ecuaciones trigonométricas:

8. Resuelve la ecuación $\cos^2 x = \sin^2 x$.

Sol:
$$x = 45 + 90k$$

9. Resolver:

a)
$$sen\alpha = sen \beta$$
 b) $cos\alpha = cos\beta$ c) $tg\alpha = tg\beta$ d) $sen\alpha = cos\beta$ e) $tg\alpha = cotg \beta$
Sol: a) $\alpha = \beta$, $\alpha = 180 - \beta$; b) $\alpha = \beta$, $\alpha = -\beta$; c) $\alpha = \beta$, $\alpha = 180 + \beta$; d) $\alpha = 90 - \beta$, $\alpha = 90 - \beta$

10. Resolver las ecuaciones:

a)
$$senx=sen(x+(\pi/2))$$
 b) $senx=-sen(x+(\pi/2))c)$ $cos(2x)=cos(x+90^{\circ})$ d) $sen3x=cos(2x+(\pi/3))$ e) $senx=cos(2x)$ f) $tgx=tg(2x+\pi)$

Sol: a)
$$\pi/4+k\pi$$
; b) $-\pi/4+k\pi$; c) $x=\pi/6+2k\pi/3$, $x=\pi/2+2k\pi$; d) $\pi/30+2k\pi/5$; e) $\pi/6+2k\pi/3$; f) $k\pi$

11. Resolver la ecuación: $sen(2x+(\pi/6))=cos((\pi/4)-x)$.

Sol:
$$x = \pi/12 = 15^{\circ}$$

- 12. Resolver: a) $sen(3x-120^{\circ})=cos(x+15^{\circ})$; b) x=arsen0; c) x=arctg1; d) x=arcos(-1/2); e) $senx \cdot cosx = 1/2$; f) $2cos5x \cdot sen2x = \sqrt{2} \cdot cos5x$; g) $cos^2x = sen^2x$; h) senx=-cosx; $\cos x$ -2senx· $\cos x$; j) $\cos 2x=1+2$ senx; k) [senx+seny=1; senx-seny=0]; l) $tg^2x+3=4tgx$; m) $sen^2x + cos2x = 1$; n) $6cos^2x + cos2x = 1$.
- 13. Resolver la ecuación: $senx+(1/\sqrt{3})cosx=0$.

Sol:
$$x=150+180k$$

- 14. Resuelve las siguientes ecuaciones:
 - b) $\cos x \cdot \tan \sqrt{3/2}$ a) $senx \cdot cosx = 1/2$ c) sen2x=senx
 - d) $\sqrt{3} + \cos x = 0$ e) $\cos 2x = \sin(x + 180^{\circ})$

Sol: a)
$$x=45+180k$$
; b) $x=60+360k$, $x=120+360k$; c) $x=180k$, $x=60+360k$, $x=300+360k$; d) $x=150+180k$; e) $x=90+360k$, $x=210+360k$, $x=330+360k$

15. Resuelve los siguientes sistemas:

a)
$$\begin{cases} sen x + sen y = 1 \\ cos (x - y) = 1 \end{cases}$$
 b)
$$\begin{cases} cos x \cdot tg \ x = \frac{\sqrt{3}}{2} \\ sen (x + y) = 1 \end{cases}$$
 c)
$$\begin{cases} sen x \cdot sen \ y = \frac{1}{4} \\ cos x \cdot cos \ y = \frac{3}{4} \end{cases}$$
 d)
$$\begin{cases} sen^{2} x + cos^{2} y = 1 \\ -cos^{2} x + sen^{2} y = \frac{1}{2} \end{cases}$$
 e)
$$\begin{cases} sen x \cdot sen \ y = 1 \\ sen x \cdot sen \ y = cos x \cdot cos \ y \\ sen x + sen \ y = \frac{3}{2} \end{cases}$$
 f)
$$\begin{cases} sen x \cdot sen \ y = cos x \cdot cos \ y \\ x - y = 30^{\circ} \end{cases}$$

d)
$$\begin{cases} sen^{2} x + \cos^{2} y = 1 \\ -\cos^{2} x + sen^{2} y = \frac{1}{2} \end{cases} e) \begin{cases} x + y = 120^{\circ} \\ sen x + sen y = \frac{3}{2} \end{cases} f) \begin{cases} sen x \cdot sen y = \cos x \cdot \cos y \\ x - y = 30^{\circ} \end{cases}$$

Sol: a)
$$x=30^\circ$$
, $y=30^\circ$; $x=150^\circ$, $y=150^\circ$; b) $x=60^\circ$, $y=30^\circ$; $x=120^\circ$, $y=330^\circ$; c) $x=30^\circ$, $y=30^\circ$; $x=150^\circ$, $y=150^\circ$; d) $x=60$, $y=60$; $x=120$, $y=120$; $x=240$, $y=240$; $x=300$, $y=300$, $x=60$, $y=120...$; e) $x=90$, $y=30$; $x=30$, $y=90$; f) $x=60$, $y=30$

16. Resuelve la ecuación: cos(2x)-2cosx+1=0.

Sol:
$$x = \pi/2 + 2k\pi$$
; $x = 0 + 2k\pi$.

17. Despeja x en las siguientes igualdades: a) $2=2\arctan(x/4)$; b) $1=\sqrt{2}\arctan(1/x)$.

Sol: a)
$$x=\pi$$
; $x=5\pi$; b) $x=4/\pi$; $x=4/(7\pi)$

18. Calcula arctg $\sqrt{3}$ +arccotg($1/\sqrt{3}$).

Sol:
$$60^{\circ}+30^{\circ}=90^{\circ}$$

19. Resuelve los siguientes sistemas:

a)
$$\begin{cases} sen x + sen y = 1 \\ 2x + 2y = 120 \end{cases}$$
 b)
$$\begin{cases} cos x \cdot tg \ x = \frac{\sqrt{3}}{2} \\ sen (x + y) = 1 \end{cases}$$
 c)
$$\begin{cases} cos (x + y) = 0 \\ cos (x - y) = 0 \end{cases}$$
 Sol: a) $x = 30^\circ$, $y = 30^\circ$ b) $x = 60^\circ$, $y = 30^\circ$; $x = 120^\circ$, $y = 330^\circ$; c) $x = 90^\circ$, $y = 0$; $x = 270^\circ$, $y = 0$.

20. Resuelve las siguientes ecuaciones trigonométricas:

a) sen
$$(x-30) = 1/2$$
 b) cos $(2x-30) = 1/2$ c) sen $(3x-30) = \sqrt{3}/2$;

d)
$$\cos (3x-15) = \sqrt{3}/2$$
 e) $\tan (x-45) = -1$

Sol: a)
$$x=60+360k$$
; $x=180+360k$; b) $x=45+180k$; $x=165+180k$; c) $x=30+120k$; $x=50+120k$; d) $x=15+120k$; $x=115+120k$; e) $x=180k$.

21. Resuelve las expresiones:

a)
$$\sin 2x \cdot \cos x = 6 \sin^3 x$$
 b) $\cos x = (2 \tan x)/(1 + \tan^2 x)$ c) $\sin^2 x - \cos^2 x = -1/2$

d)
$$\cos \cos \cos x = 1$$
 e) $\cos \cos x = 2$ f) $\cos 2x = 2\cos^2 x$

Sol: a)
$$x=180k$$
; $x=30+180k$; $x=150+180k$; b) $x=30+360k$; $x=150+360k$; c) $x=30+180k$; $x=150+180k$; d) $x=45+180k$; e) $x=60+360k$; $x=300+360k$; f) $x=60+180k$; $x=120+180k$

22. Resuelve las ecuaciones: a) tgx=2senx b) 2tgx =
$$1/\cos^2 x$$
 c) sec(3x)= $2/\sqrt{3}$

Sol: a)
$$x=180k$$
, $x=60+360k$, $x=300+360k$; b) $x=45+180k$, $x=135+180k$; c) $x=10+120k$; $x=100+120k$.

23. Resuelve las ecuaciones:

a)
$$(4tgx)/(1-tg^2x) = 2/tgx$$
 b) $\cos 2x + 2\cos^2 x = 0$ c) $\cos 2x + \sin x = \cos x$.

Sol: a)
$$x=30+180k$$
; b) $x=60^{\circ}+360k$; $x=120+360k$; c) $x=30+360k$; $x=150+360k$.

24. Despeja x en la expresión $y=(1/a)\cdot \sec(2-x)$. Sol: $x=2-\arccos[1/(ay)]$

25. Resuelve la expresión sen4x+sen2x = 0. Sol: x=0+60k; x=90+180k

26. a) Hallar el valor de la siguiente expresión: $arctg1 + arctg\sqrt{3}$ - $arcsen(sen(\pi/3);$

b) Resuelve la ecuación: sen(2x+60) + sen(x+30) = 0.

Sol: a)
$$\pi/4$$
; b) $x=-30+120k$; $x=150+360k$.

27. Resuelve:

a)
$$\cos(2x-\pi)=0$$
 b) $\sin(2x-(\pi/3))=1/2$ c) $3\sin x=2\cos^2 x$

d)
$$tg(2x)=-1$$
 e) $2 sen^2x-2\sqrt{2} senx+1=0$ f) $tg^2x=3$

Sol: a)
$$x=\pi/4+k\pi/2$$
; b) $x=\pi/4+k\pi$, $x=7\pi/12+k\pi$; c) $x=\pi/6+2k\pi$; d) $x=11\pi/6+2k\pi$; e) $x=\pi/4+2k\pi$; $x=3\pi/4+2k\pi$

28. Resolver las siguientes ecuaciones trigonométricas.

a)
$$sen\beta = 1/2$$
. c) $ctg\beta = \sqrt{3}/3$ d) $sen2\beta = 1$

4- Demostrar identidades

- 1. Comprueba que son ciertas las expresiones:
 - a) $\cos \alpha . \sin^2 \alpha + \cos^3 \alpha = tg\alpha \cdot \csc \alpha$ b) $(\sin \alpha + \cos \alpha)^2 = 1 + \sin(2\alpha)$
 - c) $\sec^2 \alpha = (1 + tg^2 \alpha)$ d) $\cos^2 \alpha = \cot g^2 \alpha / (1 + \cot g^2 \alpha)$

Sol: a) No; b) Sí; c) Sí; d) Sí

- 2. Comprueba que es cierta la igualdad: $(1/\cos^2 x)=1+tg^2 x$.
- 3. Comprueba si es cierta la igualdad: (1/cosx)-cosx=tgx.

Sol: No

- 4. Decir si son ciertas o no las igualdades:
 - a) $\cos(2x) = 2\cos x$ b) $\cos(\pi) = 2\cos(\pi/2)$ c) $\sin 2\pi = 2\sin \pi$
 - d) $\cos 2\pi = 2\cos \pi$ e) $\sin(\pi/3) = 2\sin(\pi/6)$

Sol: a) No; b) No; c) Sí; d) No; e) No

- 5. Demuestra que arcsen(-x)=-arcsenx y que arctg(-x)=-arctgx.
- 6. Demuestra la igualdad: tg(45+ a)-tg(45- a)=2tg2a.
- 7. Demuestra la igualdad: a) $sen^2x=1/2$ (1-cos2x); b) $cos^2x=1/2$ (1+cos2x).
- 8. Demuestra la igualdad: (1+cos2x).tgx=2sen(2x).
- 9. Demuestra la igualdad: a) $\frac{tg^2x}{1+tg^2x} = sen^2x$; b) $\frac{1}{1+tg^2x} = cos^2x$
- 10. Demuestra la igualdad: $cos(x+45^{\circ}).(cosx-senx) = \sqrt{2}/2 cos2x$.
- 11. Demuestra los teoremas del seno y del coseno.
- 12. Demuestra las siguientes igualdades:
 - a) $sen(90+\alpha) \cdot cos(-\alpha) + sen(180+\alpha) \cdot cos(90+\alpha) = 1$
 - b) $\cos(-\alpha)\cdot\cos(180-\alpha)+\cos(90-\alpha)\cdot\sin(-\alpha)=-1$

c)
$$\frac{tg^2\left(\frac{x}{2}\right)}{1+tg^2\left(\frac{x}{2}\right)} = \frac{1-\cos x}{2}$$

d)
$$\frac{sen x - cosec x}{cos x - sec x} = cotg^3 x$$

- 13. Demuestra la igualdad: $\frac{\cos(x+y) \cdot \cos(x-y)}{\cos x \sin y} = \cos x + \sin y$
- 14. Demuestra la igualdad: $sen(\pi-\alpha).sen(\pi/2-\alpha)+sen(-\alpha).cos(\pi+\alpha)=sen2\alpha$
- 15. Demuestra la igualdad: sen(x/2).cos(x/2)=(senx)/2
- 16. Demuestra la identidad: $sen2\alpha = (sen \alpha + cos \alpha)^2$
- 17. Demuestra que $\cos 4 \alpha$ $\sin 4 \alpha = \cos 2\alpha$

- 18. Expresa $cos(30^{\circ}+x)$ en términos de sen x y cos x.
- 19. Expresa tg (45°+x) en términos de tg (x).
- 20. Utiliza la fórmula cos(x+y) para hallar el valor exacto de 105°.
- 21. Demuestra las siguientes identidades:

```
sen(a+b) \cdot sen(a-b) = sen2a - sen2b

sen(a+b) \cdot sen(a-b) = cos2a - cos2b
```

- 22. Expresar cos 3a en función de sen a y cos a.
- 23. Obtener una fórmula para cos 4a en términos de cos a.
- 24. Si tg a= 1.6. Calcular tg 2a y tg 3a.
- 25. Calcular sen (a+b+c) en función de las razones trigonométricas de a, b y c.

5- Representación de funciones y deducciones

- 1. Calcula el dominio, imagen, periodicidad, máximos y mínimos, crecimiento y decrecimiento de: y=senx; y=cosx; y=tgx.
- 2. Dibuja la gráfica de la función sen2x.
- 3. Representa la función y=senx+2
- 4. Halla el dominio de las funciones a) y=cosx; b) y=arcosx.

```
Sol: a) Dom=x \in R; b) Dom=[-1,1]
```

- 5. Deducir las siguientes razones trigonométricas: a) razones del ángulo (a+ b); b) razones del ángulo (a- b); c) razones del ángulo mitad (x/2); d) razones del ángulo doble (2x).
- 6. Deducir las razones trigonométricas de 30° y 60° a partir de un triángulo equilátero de lado 1.
- 7. Deducir las razones de 45° a partir de un cuadrado de lado 1.
- 8. Expresa sen 3α en función de sen α .

Sol: $sen3\alpha = 3sen\alpha - 4sen^3\alpha$